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Abstract

The reliability of methods for separating palaeostress tensors from heterogeneous fault-slip data is evaluated. The methods of Etchecopar

et al. (1981), Yamaji (2000), and the cluster procedure of Nemcok and Lisle (1995) are assessed but the results can probably be extrapolated

to other methods based on similar assumptions. Heterogeneous fault-slip data sets, artificially generated by mixing two natural homogeneous

data sets, have been used to evaluate both the role of the relative dominance (in number of faults taken from each tensor) and the difference

between the parent tensors. The results obtained from a natural heterogeneous data set were compared with additional field data to evaluate

and constrain the tensor separation process as well. Results suggest that attempts to devise a fully automatic separation procedure for

distinguishing homogeneous data sets from heterogeneous ones will be unsuccessful because the researcher will always be required to take

some part in the correct choice of the tensors. In this sense, additional structural data such as geometrical characteristics of the faults (e.g.

conjugate or quasi-conjugate Andersonian systems), stylolites or tension gashes will be very useful for the correct separation of stress tensors

from fault-slip data.
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1. Introduction

Since the 1970s a variety of methods have been proposed

for estimating palaeostress states from field measurements

of fault striations on fault planes (e.g. Carey and Brunier,

1974; Angelier and Mechler, 1977; Angelier, 1979a, 1984;

Etchecopar et al., 1981; Simón-Gómez, 1986; Lisle, 1987,

1988; Hardcastle and Hills, 1991). The majority of these

methods assume that the sampled faults slipped indepen-

dently in a homogeneous stress field and that the recorded

fault-slip represents the direction of maximum shear stress

on the fault plane. Evidence such as the reactivation of fault

planes, faults with similar orientations but opposite senses

of slip, or several sets of stylolites and tension gashes are

common in nature but are not compatible with a single stress

tensor. Fault-slip data that can only be explained by more

than one stress tensor have been commonly called

heterogeneous.

Accordingly, several methods have been developed for

separating stresses from heterogeneous fault-slip data, e.g.

Angelier (1979a), Etchecopar et al. (1981), Armijo et al.

(1982), Huang (1988) and Galindo-Zaldı́var and Gonzále-

z-Lodeiro (1988). A detailed analysis of most of these

methods was presented by Angelier (1994). Recently, new

methods, such as that based on cluster analysis (Nemcok

and Lisle, 1995), the graphical procedure of Fry (1999), or

the multiple inverse method (Yamaji, 2000), have been

proposed for analysing heterogeneous fault-slip data sets.

There is an attempt to propose automatic computer-based

methods where no decisions need to be taken by the

structural geologist during the analysis. This goal is

considered essential for all researchers dealing with

interpretation of heterogeneous fault slip data. Even though

a number of different methods have been proposed, there is

no study that analyses the relative reliability of results from

the various methods. These methods are based on different

assumptions and use very different approximations both to

analyse faults and to separate stress tensors, and could

therefore potentially yield different results.
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The methods for analysing and separating stress tensors

from heterogeneous fault-slip data can be roughly grouped

into three essential procedures: manual procedures, semi-

automatic procedures that minimize a parameter, and

automatic procedures based on attributes of faults. The

manual procedures are based on graphical representations of

the results, which are used to differentiate stress tensors.

Some of the graphical procedures, such as the Right Dihedra

(Angelier and Mechler, 1977) and Right Trihedra (Lisle,

1987, 1988) methods, allow the recognition that data are

heterogeneous, but do not allow the component tensors to be

identified. On the other hand, the graphical y–R diagram

method (Simón-Gómez, 1986) and its modification made by

Fry (1992) as well as the methods of Fry (1999) and Yamaji

(2000) permit the separation of tensors from the analysis of

clouds and clusters displayed in them.

The second category, semiautomatic procedures, com-

prises numerical methods that automatically minimize some

parameter, usually the sum of the angular misfits (differ-

ences between theoretical striae predicted from some trial

tensor and the real striae), to search for the best tensor to fit

the faults and then analyse the remaining non-fitting faults

to search for other tensors. Although these inversion

methods are automatic, the separation of different stress

tensors and therefore homogeneous fault data need to be

carried out manually, so that they can be considered as

semiautomatic procedures for separating stress tensors.

Methods that use this approach are those proposed by

Etchecopar et al. (1981), Armijo et al. (1982), Angelier

(1979a, 1984), and Galindo-Zaldı́var and González-Lodeiro

(1988) amongst others.

In the third category, automatic separation of homo-

geneous data sets from heterogeneous data, the fault slip

data are separated before the inversion process takes place,

e.g. the cluster separation procedure proposed by Nemcok

and Lisle (1995). In this method, the striation data of each

fault are checked for compatibility with a large number of

tensors. Each fault is then described by a large quantity of

attributes that characterize the fault’s fit to each of the

tensors. These attributes are later used for comparing and

grouping faults.

Most of the new techniques have been tested with

theoretical fault-slip data sets made up of fault orientations

usually randomly distributed in space, and striations on the

faults calculated according to the Bott equation (i.e. the

direct procedure). However, natural faults commonly dis-

play several well-formed sets. Thus, conjugate or quasi-

conjugate fault systems are common in nature (Angelier,

1979b). In addition, when natural heterogeneous fault-slip

data sets are used in the tests the results are usually

satisfactory often because the two individual tensors are

quite different.

This paper addresses the feasibility of separating stresses

from heterogeneous fault-slip data and deals with the

reliability of results obtained from different procedures and

with different input conditions as well as the feasibility of

the automatic separation of stress tensors. Different tests

have been performed with both natural and artificial

heterogeneous data sets by using three different methods

(the Etchecopar, Yamaji and cluster methods) for separating

tensors. The first test utilises artificial heterogeneous data

created by mixing two homogeneous natural data sets. In

this test, we evaluate the effect of the relative dominance of

each individual data set on the separation process. In the

second test, the role of the relative proximity in orientation

of both individual stress tensors in the separation procedure

has been explored. In the third test, natural heterogeneous

data are analysed by the chosen methods, and their results

are contrasted with other independent structural

information.

2. Methods used in this study

The methods are the numerical method of Etchecopar

et al. (1981), the multiple inversion method of Yamaji

(2000) and the cluster analysis procedure of Nemcok and

Lisle (1995). This choice is based on the fact that these

represent the three main ways proposed in the literature for

separating stress tensors from heterogeneous data. We refer

to these as the Etchecopar method, the Yamaji method, and

the cluster analysis method, respectively.

The Etchecopar method (Etchecopar et al., 1981;

Etchecopar, 1984) was used in combination with the Right

Dihedra method (Angelier and Mechler, 1977) and the y–R

diagram method (Simón-Gómez, 1986) in the manner

proposed by Casas et al. (1990). This combined use

provides a more robust result, and contrasting their

individual results allow us to assess the reliability of results.

The Etchecopar method uses an iterative algorithm that

minimizes the quadratic sum S of the angular deviations

choosing a selected percentage (n) of data that have smallest

angles between the theoretical and actual striations. The

final percentage of faults (n) used for determining the stress

tensor (Etchecopar et al., 1981) is the one which produces a

maximum number of striations giving small deviation, gives

a histogram of angle of deviations for which the maximum

corresponds to the smallest differences in angle, and leads to

stable solutions. We have used a misfit threshold of 128 in

the general case and 108 for the case of tensors with a strike-

slip configuration following the recommendation by Casas

(1990) and Casas et al. (1990). This method yields: (1) the

orientation of principal stress axes, (2) the shape factor Re

(Re ¼ s2 2 s3/s1 2 s3) of the stress ellipsoid, (3) the

estimated errors for the calculated stress axis orientations

and the Re parameter, (4) the histogram of angular

deviations of faults, and (5) the representation on a Mohr

diagram of the fault planes explained by the computed

tensor. These results together provide a complementary way

of evaluating the quality of the solution (Etchecopar et al.,

1981; Etchecopar, 1984; Etchecopar and Mattauer, 1988;

Casas, 1990; Casas et al., 1990; Liesa, 2000). As here
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defined, the Re parameter is equal to the shape factor F

(Angelier, 1994).

The general procedure used here for the application of

the Etchecopar method involves the following steps. Firstly,

the program searches for tensors with a high percentage of

explained faults (80% for example). This percentage is

increased or reduced until the quality criteria (mainly the

misfit threshold and shape of the angular deviation

histogram) suggest that it is a good result. Afterwards, a

minor second tensor is sought in the same way. Sometimes,

usually when the number of faults associated with the

second tensor is small, just the data that are not explained by

the first computed tensor must be used for obtaining the

other tensor. Occasionally, obtaining a good solution

requires the input of an initial tensor that becomes the

starting point for the search algorithm. Thus, besides the

percentage, input parameters include the orientations of

the s1 and s3 stress axes and the Re value. They are selected

on the basis of results of other fault analysis methods that

permit the exploration of all the space of possible solutions

(y–R diagram, for example) or information provided by

other tectonic structures (such as stylolites). The use of the

Etchecopar method in combination with other methods

overcomes the problem of ‘hidden’ tensors. In any case, the

selection of appropriate tensors must be made using

additional criteria such as the mechanical compatibility or

the tectonic context (Casas et al., 1990).

The statistical technique of cluster analysis arranges

faults into dynamic groups. The grouping procedure is based

on attributes that describe a given fault’s compatibility with

a range of trial stress tensors. The background and

procedure of the cluster analysis are fully explained by

Nemcok and Lisle (1995) and Lisle and Vandycke (1996). A

modified version of the cluster program was used in this

study (Appendix A). The subgroups of faults obtained after

the application of the cluster method were analysed by the

Etchecopar method in order to calculate the stress tensors.

The multiple inverse method (Yamaji, 2000) applies the

inverse method for determining the directions of the three

principal axes and the shape of stress ellipsoid for all k-fault

subsets of the data. After an evaluation of the stability of the

solution, an optimal k-value (usually k ¼ 4 or 5) is chosen

and significant solutions are identified as clusters in

parameter space.

3. Testing the simulated heterogeneous fault-slip data

3.1. Data

In order to obtain a heterogeneous fault slip data set, two

natural homogeneous fault data sets were mixed. The first

set (site TYM) consists of 38 normal faults (Fig. 1)

measured by Angelier (1979b) to the SSE of Tymbaki

(western Messara, Crete). The second data set (site ITUR)

consists of 35 strike-slip faults (Fig. 1) selected from all

measurements made on Middle Eocene calcareous sand-

stones to the north of Estella (Navarra, Spain). This data set

taken from Liesa (2000) was not homogeneous in character,

so that several normal faults explained by a different stress

tensor were removed from the original data set. In the

original data, the cross-cutting relationships of striations on

several fault planes indicate that the normal movement

acted later than the strike-slip one (Liesa, 2000). This

suggests that our artificial separation identifies a homo-

geneous fault data set belonging to the strike-slip tensor

configuration that acted prior to the extensional event. In

both fault data sets all senses of movements can be clearly

deduced from kinematic indicators (striated or crystallized

steps), so that this is not an additional area of uncertainty in

the data. The tensors obtained from the inversion of each

individual data set are displayed in Fig. 1 and Table 1.

3.2. The relative dominance of subgroups

For testing the influence of the relative dominance of

subgroups on the separation of homogeneous fault popu-

lations, two different heterogeneous data sets are investi-

gated. In the first one (case 1), the data represent the

combination of all fault-slip data of both natural subsets

(TYM and ITUR sites). In this case, there is no dominance

between both individual data groups, because they consist

of 38 faults (TYM subgroup) and 35 faults (ITUR

subgroup), respectively. In the second (case 2), an artificial

heterogeneous fault data is created by adding the TYM

subgroup to one third of the faults (12 faults) randomly

chosen of the ITUR subgroup. This second case represents a

relative dominance of 3:1 between the individual subgroups.

In the first case with a similar relative dominance of the

subgroups, the results obtained from the different methods

were very similar and very close to the expected stress

tensors (Table 2). In the second case with unequal relative

dominance of subgroups, the cluster procedure and

Table 1

Expected stress tensors from the individual TYM and ITUR homogeneous

subgroups of fault-slip data. The results have been calculated using the

Etchecopar (Etchecopar et al., 1981) inversion method. The value of a is

the average deviation angle (in grades) is (in degrees) between theoretical

and real striae and N is the number of faults explained by the tensor (the

total number of faults separated by the cluster procedure is shown between

brackets)

s1 axis s3 axis F ¼ Re a N

Original data

TYM subgroup 278 81 144 06 0.06 14.4 38

TYM subgroupa 278 84 140 06 0.08 12.1 35

ITUR subgroup 227 00 137 04 0.23 7.7 35

Modified (rotated) TYM subgroup

Intermediate TYM data 056 04 144 04 0.06 14.4 38

TYM data in case 4 076 04 164 04 0.06 14.4 38

TYM data in case 3 106 04 194 04 0.06 14.4 38

a Tensor used for abating the faults to a strike-slip configuration.
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Etchecopar method successfully separated the two stress

tensors, whereas the Yamaji method was not able to

determine the minor stress tensor (Fig. 2a). With this

exception, the obtained tensors in cases 1 and 2 are in good

agreement with those obtained from the individual data

subsets (Fig. 1; Table 1).

3.2.1. Interpretation

The analysis that follows demonstrates that the most

significant factor determining the unsuccessful results of the

Yamaji method in case 2 (relative dominance 3:1) is the

relative size of fault sets and not the small number of faults

(12) of the minor fault data set, near the minimum required

to define the stress tensor with confidence. The failure of the

Yamaji method to determine the minor tensor suggests an

important drawback of this method. Its cause can be found

in the analysis procedure, which leads to a very different

probability in the number of subsets and therefore in the

solutions when the number of faults of each subset is quite

different. To explain this assumption let us consider, as is

the case, a heterogeneous data set formed by two

homogeneous data sets with 38 and 12 data, respectively.

According to the Yamaji (2000) formula that calculates the

number of subsets C of k-elements:

NCk ¼ N!=kðN 2 kÞ!

where N is the total number of fault-slip data and k the

number of faults in each subset used for inversion, and for a

value of k ¼ 5 (which is considered a normal value where

solutions are stable; Yamaji, 2000), the total number C of

subsets of five faults will be 2,118,760, while the number of

k-subsets that incorporate exclusively faults of the first (38

faults) or second (12) homogeneous fault data set will be

501,942 and 792 subsets, respectively. Not taking into

account the combinations between faults of different

homogeneous fault sets, which would increase the value,

the ratio between subsets that will fit the first tensor to those

that fit the second tensor is 634. So, with a relative

dominance of 3:1 in the number of faults between both

homogeneous subgroups a relative dominance greater than

634:1 is expected in results that fit the first or the second

tensor, respectively. This fact explains why the minor

solution is very difficult to detect by the Yamaji method.

Therefore, such a method probably only achieves satisfac-

tory solutions when data of homogenous subsets that make

up a heterogeneous fault-slip data set roughly have equal

dominance.

Finally, the Yamaji method has the problem of

determining the shape parameter of the stress tensor because

the cluster of results involves a wide range of mL values

(Fig. 2a). Additional drawbacks are that this method permits

neither the classification of faults into subsets nor the

determination of the number of faults for each solution

tensor, allowing us just to recognise the stress tensors.

Moreover, the results must be evaluated by visual inspec-

tion, which carries the potential for bias.

The cluster analysis method performed best in dis-

tinguishing between individual subgroups in the case of

subsets with variable dominance. So, all faults were usually

Fig. 1. Stereographic projection (lower hemisphere, Schmidt net) of faults and striae of the homogeneous fault slip data of ITUR and TYM sites and of the stress

axes of stress tensor (see Table 1) determined from them.

Table 2

Testing the influence of the relative dominance of individual subgroups in

the separation of stress tensors. Stress tensors (s1 and s3 stress axis

orientations and F parameter) obtained by the different used procedures for

no relative dominance between both individual subsets (case 1) and for an

unequal (3:1) relative dominance of subgroups of faults (case 2). Key as

Table 1

s1 axis s3 axis F ¼ Re a N

Case 1: Nearly equal relative dominance of subgroups in number of faults

Etchecopar method 209 85 320 02 0.20 13.4 42

041 07 131 04 0.23 7.5 37

Yamaji method 218 88 131 04 0.12 – –

044 02 134 03 0.20 – –

Cluster procedure 278 81 144 06 0.06 14.4 38(38)

227 00 137 04 0.23 7.7 35(35)

Case 2: Unequal (3:1) relative dominance of subgroups in number of faults

Etchecopar method 176 82 328 07 0.26 13.2 39

045 02 135 13 0.14 4.5 12

Yamaji method 240 86 316 14 0.1–0.4 – –

Cluster procedure 278 81 142 07 0.07 14.4 37(37)

045 02 135 13 0.14 4.5 12(12)
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grouped in the correct subgroup for case 1 as well as for case

2. Only in some tests of case 2 was one strike-slip fault

grouped with the normal fault (TYM) subgroup.

Although the results obtained from the Etchecopar

method in case 1 are in good agreement with the general

stress tensor determination, four or five faults were

misclassified and explained by the other tensor. This

may be caused by the fact that both expected individual

tensors are very close in axial orientations, although s1

and s2 have interchanged positions. In any case, the

position of these faults on the s2s3 circle on the Mohr

circle diagram presented by this method suggest that these

faults are not well explained by the tensor, and this factor

has been used to remove them from the solution. A

second tensor was then searched for considering those

faults not consistent with the first tensor and those faults

not favourably oriented for slip. Including these faults

allows us to achieve a better solution for the second

tensor. In addition, the determination for case 2 of the

minor stress tensor by the Etchecopar method is more

Fig. 2. Results of the multiple inverse method of Yamaji (2000). (a) Case 2: an unequal relative dominance of the individual subgroups (enhance factor E ¼ 4;

dispersion factor D ¼ 2; see Yamaji (2000) for explanation). (b) Case 3: s2 vertical and approximate 608 difference between the s1 directions of both expected

individual tensors (enhance factor E ¼ 6; dispersion factor D ¼ 3). The parameter mL (Lode’s number) represents the shape of the stress ellipsoid and is

defined (Lode, 1925) by the ratio mL ¼ ð2s2 2 s1 2 s3Þ=ðs1 2 s3Þ; where s1, s2 and s3 are the principal stresses. The parameter mL is linearly related to f or

Re parameters according to mL ¼ 2Re 2 1.

C.L. Liesa, R.J. Lisle / Journal of Structural Geology 26 (2004) 559–572 563



difficult because the small number of faults (12 faults) that

characterizes the tensor leads to a poor tensor definition.

3.3. The difference in tensors from individual subgroups

The influence of the similarity in orientation of both

individual stress tensors in the separation procedure was

evaluated using data sets TYM and ITUR as well. In this

case, two different tests were carried out with an angular

difference, in the horizontal plane, of the s1 orientations of

the parent stress tensors of 608 (case 3) and 308 (case 4),

respectively, s2 being nearly vertical (strike-slip configur-

ation) in both cases. For producing such conditions, normal

fault data of set TYM were firstly restored by rotating the

s1s3 plane of the initial stress tensor (Table 1) to the

horizontal, so that s1 was horizontal and normal faults were

converted to strike-slip faults. Then, these faults were

clockwise rotated 508 and 208 about a vertical axis to obtain

roughly the angular deviation of 608 (case 3) and 308 (case

4), respectively, between the expected s1 with the new

TYM data and the s1 of the stress tensor obtained from

ITUR data. Finally, the modified TYM data were merged

with ITUR data to provide the required heterogeneous fault-

slip data sets.

In case 3, with s2 vertical and a roughly 608 difference

between the s1 directions of both expected individual

tensors or parent tensors (Table 1, case 3), the cluster and

Etchecopar methods separate the individual tensors success-

fully. The Yamaji method, however, is unsuccessful for this

case and does not distinguish both tensors, so that just one

tensor is obtained, which displayed a s1 axis trending 0738,

i.e. in an intermediate position between those expected for

the two individual subgroups (Table 3; Fig. 2b).

In case 4 (with s2 vertical and an approximate 308

difference between s1 of expected individual tensors (Table

1, case 4)), all methods failed to separate the tensors. In this

case, all faults are found to be compatible with a single

tensor with s1 orientation intermediate to those of the

expected tensors.

3.3.1. Interpretation

Based on results in case 4, it seems that for these

methods, the 308 difference angle between tensors would be

a limiting angle for the separation of stress tensors. In such

cases, field observations, such as similarly oriented fault

planes with opposite sense of slip or several striae on a fault

plane, could suggest the existence of more than one stress

tensor although computer methods only provide a compro-

mise stress tensor.

The failure of the Yamaji method in case 3 could also be

a consequence of combining faults to form subsets of k

elements that are used for stress inversion. In this way, the

number of combinations involving faults of different

subgroups will be greater than the combinations involving

faults from same subgroup of faults, which leads to the

major abundance of intermediate solutions.

The cluster procedure usually achieves a stable separ-

ation of the subgroups in case 3, but in a test with other input

conditions (grid spacing ¼ 158, misfit threshold ¼ 108, and

no shear (t/s stress ratio) condition) a different cluster

pattern with incorrect subsets appeared. As in all the cases,

the use of a high value for the misfit threshold between real

and theoretical striations also leads to incorrect results.

Besides, also in the successful tests with different input

parameters (grid spacing ¼ 308, 308, and 208; misfit

threshold ¼ 108, 108, and 108; and t/s stress ratio 0.7,

non-considered, and 0.7, respectively) three faults were

placed in the wrong subgroup. In any case, three faults from

nearly 35 faults should not produce significant errors in the

final solution of the stress tensor especially when these

faults are very similar to the others.

The Etchecopar method infers two tensors very close to

those expected (Table 3). These tensors explain the majority

of faults of the respective subgroups of data. However, as in

cases 1 and 2, three faults of the TYM subgroup of data

(faults 23, 27 and 28) were not properly explained and four

faults (faults 39, 43, 50 and 61) of the other (ITUR)

subgroup were explained by the first tensor. The second

tensor explained all faults of the subgroup ITUR and three

Table 3

Testing the influence of the difference in stress tensors of the individual subgroups in the separation of stress tensors. Stress tensors (s1 and s3 stress axis

orientations and F parameter) obtained by the different used procedures for 608 of angular difference in the horizontal plane between the s1 orientations of the

expected individual tensors (case 3) and for a difference of 308 (case 4). Key as Table 1

s1 axis s3 axis F ¼ Re a N

Case 3: Separation between individual tensors of 608

Etchecopar method First 096 00 006 02 0.17 12.0 39

Second 229 00 139 04 0.21 7.9 38

Yamaji method 073 01 163 06a 0.9 – –

Cluster procedure 104 01 014 03 0.06 12.0 39(41)

047 00 137 04 0.24 7.6 32(32)

Case 4: Separation between individual tensors of 308

Etchecopar method 055 02 145 10 0.03 11.6 66

Yamaji method 060 03 Great circle 0.1–0.3 – –

Cluster procedure 055 02 145 10 0.03 11.6 66

a A different clustering of s3 in a vertical orientation and F values of 0.9 is also depicted.
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faults (faults 4, 5 and 15) of the subgroup TYM, which also

were explained by the first tensor. These three faults are

located, however, in the lower-right position on the Mohr

circle of the second tensor and are therefore incompatible

with it, so that they could be removed from this solution

(Fig. 3).

4. Testing a natural heterogeneous data set: comparison

with other structural data

4.1. Data

The natural heterogeneous data set consists of 49 fault-

slip data pairs measured on steeply dipping strike-slip faults

measured on the exposures of Triassic breccias at Ogmore-

by-Sea (South Wales). These data (Ogmore site 4) have

been previously analysed by Vandycke et al. (1992), Liesa

(1993), and Lisle and Vandycke (1996). The choice of this

data set was based on the fact that these studies used

different inversion methods, which sometimes led to

different stress tensor separations (Fig. 4).

Moreover, there is additional structural information that

can be used for assessing the validity of the inferred stress

tensors and therefore to constrain the results. Lisle and

Vandycke (1996) point out that the faults in the Triassic

rocks describe a conjugate strike-slip fault set trending at

0208 and 0658. These trends have movement senses

indicated by calcite slickenfibres and off-set clasts compa-

tible with a post-Triassic NE–SW direction of s1. Cross-

cutting relationships of two lineation sets on a strike-slip

fault trending 1058 shows that the dextral movement was

prior to the sinistral one. Within the Triassic and especially

within the Carboniferous Limestone, located under the

Triassic angular unconformity, other nearly vertical strike-

slip faults occur in two trends, averaging 1008 and 1428,

respectively. These faults interpreted as conjugate Ander-

sonian faults indicate a s1 direction plunging gently to 1208

and a near-vertical s2 axis (Lisle and Vandycke, 1996). In

addition, two sets of stylolitic points indicating E–W and

N–S s1 compression, respectively, and two sets of steeply

dipping tension gashes indicating NNE–SSW and ESE–

WNW s3 extension, respectively, are widely displayed

within the Carboniferous limestones (Fig. 4).

4.2. Results

The analysis of fault-slip data at Ogmore site 4 by the

Etchecopar method, combined with the Right Dihedra and

y–R diagram methods, allowed us to separate two stress

Fig. 3. Two stress tensors obtained by the Etchecopar method (Etchecopar et al., 1981) for case 3. The stress axis orientations, the shape factor (Re) of stress

ellipsoid, the number of explained faults by the tensor, the average standard deviation between the real and theoretical striae of faults explained by the tensor,

the histogram of angular deviations for each fault (the explained faults appear in grey), and the Mohr circle representation of the explained faults (faults labelled

with their respective numbers) are displayed for each stress tensor. Faults 1–38 are faults of the TYM set; faults 39–73 correspond to faults of the ITUR set.
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tensors with strike-slip configurations (Table 4; Fig. 5)

explaining 23 and 26 faults, respectively. The first tensor

has a maximum principal stress axis s1 nearly horizontal

and trending 1118 and a stress ratio Re ¼ 0.24 (Re ¼ F). The

nearly horizontal s1 of the second one trends 0358 and the

stress ratio is 0.17. In this case, three faults (numbered 26,

30 and 34) have been explained by the two tensors but

another three faults (numbered 4, 5 and 18) were not

explained by either tensor.

The clustering of individual results provided by the

Yamaji method also suggests the existence of two distinct

stress tensors with approximately horizontal compression

directions trending roughly 0328 and 3078, respectively

(Table 4). Both clusters are depicted by individual solutions

representing values of mL ranging from 21 to 20.6 and a

medium value of 20.8 (F ¼ 0.1), and with s3 axes

distributed on a great circle but with some grouping near

the vertical position. Accordingly, the positions of s2 and s3

axes are not well defined.

These data were intensively investigated by the cluster

procedure because earlier results of Lisle and Vandycke

(1996) by this method are not in agreement with other field

data. So, 18 tests with different input parameters, i.e.

different values for grid spacing, misfit threshold, and shear

criteria, were carried out (see table on Fig. 6). The results

suggest two distinct clustering patterns and therefore two

different groupings of the fault-slip data that have been

called, according to the number of solutions, the major (a)

and minor (b) agglomeration patterns (Fig. 6). Each

agglomeration pattern produced two main groups of faults,

each one of which was inverted by using the Etchecopar

method, thus giving two stress tensors for each agglomera-

tion pattern (Table 4; Fig. 6).

4.3. Interpretation

The stress tensors separated from the Ogmore hetero-

geneous fault-slip data by the Etchecopar and Yamaji

methods are very similar and correspond to those inferred

from the minor cluster agglomeration pattern obtained by

the Nemcok and Lisle (1995) cluster procedure (Table 4).

Accordingly, two stress tensors with usually strike-slip

configuration (s2 nearly vertical) and s1 nearly horizontal

and oriented roughly ESE–WNW (tensor 1) and NNE–

SSW (tensor 2), respectively, can be distinguished. More-

over, the faults grouped in these two homogeneous groups

of faults by Etchecopar (Fig. 5) and cluster procedures (Fig.

6b) are also very similar. The similarity of the results

obtained by the different methods suggest that these two

stress tensors are defined with a high confidence and that

they probably represent the inversion of two single groups

of homogeneous fault-slip data. However, the appearance of

a different solution by cluster analysis, which is moreover

the prevalent solution in terms of number of tests (major

solution; Fig. 6a; Table 4), is not in agreement with this

conclusion. So, the significance of obtaining these two

possible solutions by cluster analysis as well as the

‘election’ process of the right result are two aspects that

require closer consideration.

The fault agglomeration patterns and tensors obtained

from their inversion by the Etchecopar method, for the

major and minor solutions inferred from cluster procedure

are shown in Fig. 6. The four tensors are relatively good

from the point of view of the quality criteria of the angular

Fig. 4. Strike-slip faults sampled in Ogmore 4 site and stress tensors previously inferred. Rose diagrams of stylolitic points and strikes of tension gashes in

Carboniferous Limestone are also shown (after Lisle and Vandycke, 1996).

Table 4

Summary of stress tensors determined in the Ogmore site 4. Keys as Table 1

OGMORE SITE 4 s1 axis s3 axis F ¼ Re a N

Etchecopar method 111 03 021 01 0.24 5.91 23

035 01 125 10 0.17 6.42 26

Cluster procedure Major cluster agglomeration pattern

Tensor 3 342 02 072 06 0.48 8.86 25

Tensor 4 068 04 338 06 0.57 5.90 21

Minor cluster agglomeration pattern

Tensor 1 101 01 011 01 0.12 2.45 21

Tensor 2 026 01 116 26 0.03 8.18 20

Yamaji method 307 01 Near vertical 0.10 – –

032 03 Near vertical 0.10 – –
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deviation between real and theoretical striae and of the

angular deviation frequency histogram, but they show a

significant difference with respect to the location of faults on

the Mohr circle (Fig. 6). In tensors 1 and 2 the fault planes

are favourably oriented for slip, whereas in tensors 3 and 4

they are not. Accordingly, tensors 1 and 2, those that

represent the minor solution of the cluster procedure, are

mechanically more consistent with data and must be

considered as the appropriate tensors. These results are

also in accordance with the input parameters introduced for

obtaining the right solutions (minor agglomeration pattern),

which included a relatively high value for the shear stress

ratio (Fig. 6).

The significance of both types of solutions obtained by

cluster analysis can also be easily understood with the aid of

the graphical representation of the possible solutions depicted

by the y–R diagram (Fig. 7). The y–R diagram method is a

simplified fault inversion method that requires one axis of the

stress tensors to be vertical or nearly vertical, as is the case

here. According to Simón-Gómez (1986), possible solutions

in this diagram are those where different groups of curves

produce clouds of their mutual intersections, so that five

solutions (labelled from 1 to 5) could be differentiated in the

Ogmore 4 site (see Fig. 7). However, all of these solutions are

not possible because each fault-slip (curve) or group of fault-

slips (group of curves) can be explained by just one stress

tensor (Simón-Gómez, 1986; Liesa, 2000), so some solutions

are mutually incompatible (e.g. solutions 1 and 4 or 2 and 3).

Solutions 1 and 2 are in agreement with tensors 1 and 2,

respectively, while solutions 3 and 4 are in accordance,

respectively, with tensors 3 and 4 (Table 4).

If the Andersonian geometry of this dataset described by

Lisle and Vandycke (1996), defined by dextral faults

trending 0208 and sinistral faults trending 0508, is now

considered the correct tensors can be constrained with

confidence. So, an Andersonian model of strike-slip faults,

which is depicted on the y–R diagram as tensor 2

(compression roughly 0308), represents the appropriate

tensor. According to the y–R diagram, solutions and

therefore tensors 3 and 4 are inappropriate tensors, leaving

only 1 and 5 as other appropriate tensors. The stress tensor

of solution 5 has the principal stress axes in the same

positions as tensor 2 but has a higher stress ratio (Fig. 7).

The faults that define solution 5 in the y–R diagram have,

however, also been included in tensor 2, and they are

located essentially on the right part of the Mohr circle (Fig.

6). This location is explained because these faults represent

the reactivation, with opposite senses of movement, of fault

planes formed during the compression 1108. So, it is likely

that 0908–1058-trending, dextral strike-slip faults formed

during the compression 1108, were later reactivated as

sinistral during the compression 0308, and formerly 1208–

1408-trending, sinistral strike-slip faults were reactivated as

dextral (Fig. 7). The chronological relationship between the

dextral (fault 39) and sinistral (fault 40) movements on a

fault plane striking 1058 (Fig. 7) agrees with this

interpretation because tensor 1 explained the dextral

movement and tensor 2 the sinistral movement.

Fig. 5. Stress tensors obtained by Etchecopar method for the Ogmore 4 site fault-slip data. Results are displayed as in Fig. 3.
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In conclusion, the field data allow us to discriminate

between appropriate and inappropriate tensors and support

the existence of two different stress tensors with a strike-slip

configuration. Firstly, one compression ESE–WNW (1108)

created two sets of faults that describe an Andersonian

system: dextral strike-slip faults trending 0908–1058 and

sinistral strike-slip trending 1208–1408. After, a com-

pression directed towards NNE–SSW (0358) produced a

new Andersonian system of faults with dextral faults

trending 0208 and sinistral faults trending 0508 and caused

slip on faults of the formerly Andersonian system that were

reactivated with opposite senses of slip.

This exhaustive study has led to an interpretation of the

Ogmore site 4 quite different to that proposed by Lisle and

Vandycke (1996). By using just the cluster analysis

procedure, these authors separated two strike-slip tensors

(see Fig. 4) very close to tensors 3 and 4 shown here, but

significantly different to appropriate tensors (tensors 1 and

2) separated in this research. Tensor 1 (s1 trending 1118,

F ¼ 0.24) is completely different to the comparable tensor

with s1 trending 1798 (F ¼ 0.34) inferred by Lisle and

Vandycke (1996). The tensor 1 moreover is in accordance

with the SP1 stylolite peaks (Fig. 4) of Lisle and Vandycke

(1996) that also suggest a s1 in an E–W horizontal

direction. This ESE–WNW compression that was supposed

to be pre-Triassic in age by these authors should be

reconsidered because it clearly affects Triassic rocks.

Tensor 2 determined here in the Triassic rocks with s1

aligned in a NNE trend is closer to tensors of similar s1

trend inferred in the Carboniferous Limestone by Lisle and

Vandycke (1996) than the tensor determined by these

authors, so that this stress tensor is now defined with more

confidence.

5. Discussion and conclusions

The results presented here suggest that all investigated

methods have some limitations for separating stress tensors

from a heterogeneous data set. These limitations are

different for each method and depend greatly of the nature

of the heterogeneous data. Problems for differentiating

tensors generally increase when the homogeneous groups

belonging to each tensor are very different in number of

fault-slip data or when the tensors are closer in the

orientation of stress axes.

In the cluster analysis approach, different input par-

ameters selected by the user (grid spacing, misfit threshold,

and shear stress ratio) lead sometimes to different clustering

of faults. Frequently differences only appear in the level of

clustering lower than the main subgroups of faults, i.e. the

number of main clusters that can still be distinguished, but

occasionally major differences in clustering of faults leads

to grouping faults belonging to different subgroups. In this

Fig. 6. The major (a) and minor (b) agglomeration patterns obtained by cluster procedure from the Ogmore 4 site fault-slip data. The table shows the input

parameters used for the different tests and the two main clustering patterns obtained in the analysis. (a) and (b) Each represents an example of the agglomeration

pattern and inferred stress tensors for the major (test 1) and minor (test 13) agglomeration pattern.

Fig. 7. Results of the y–R diagram (Simón-Gómez, 1986) for fault-slip data at Ogmore 4 site. See explanation on the text.
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sense, we propose the combined use of the cluster procedure

and y–R diagram method, when this method can be applied,

in order to distinguish appropriate and inappropriate stress

tensors. This is based on several reasons: (1) the y–R

diagram allows us a visual analysis of the grouping process

of the cluster results which would be useful for the correct

interpretation, (2) the initial clustering of faults in the

dendrogram corresponds to the grouping of curves in the y–

R diagram (see Figs. 6b and 7), and (3) both methods allow a

fast identification of faults by their numbers.

Based on our study, the most sensitive parameter

producing significant differences in the results is the misfit

threshold angle between real and theoretical striae. We

believe that the input value should be in agreement with the

angular misfit theoretical striae/real striae that usually are

considered as appropriate in the inversion processes. A great

variety of values have been proposed as threshold values,

such as 208 (Etchecopar et al., 1981) or 158 (Angelier,

1979a), but according to the exhaustive studies carried out

by Casas (1990) and Casas et al. (1990) a smaller value (128

or 108) should be adopted. Because the similarities are

calculated between pairs of faults and cluster analysis

considers more faults, a more restrictive condition should be

accounted for. Our tests with cluster analysis suggest that

when its value is high enough (158 or greater) a major

misgrouping of faults is produced and when its value is

small (68 or less) the fragmentation of the dendrogram is

very noticeable, so that its interpretation is quite difficult.

Accordingly, we propose the extensive use in cluster

analysis of 108 as the input value of the misfit threshold.

Another important parameter in cluster analysis is the

shear stress ratio. Depending on this ratio, the cluster

procedure tends to group faults that can be preferentially

explained as newly formed faults (when a higher shear stress

ratio is input) or as reactivated faults (when this parameter is

not considered or its value is low), so that different solutions

could occur. Different grid spacing also leads sometimes to

different agglomeration patterns in cluster procedure.

Because of this we propose the use of several different

combinations in input looking for a wide range of possible

solutions. After the inversion of these solutions the stress

tensors should be evaluated and compared with results of

other inversion methods or with other types of structural

data.

The multiple inverse method (Yamaji, 2000) achieves

good solutions under general conditions but it has some

limits of application when the number of faults of the

individual subgroups are quite different and also when both

individual tensors are similar in the stress state configur-

ation. As has been demonstrated previously, if the number

of faults in each subgroup is quite different the procedure

highly decreases the probability of appearance of combi-

nations of the minor subgroups and then minor stress tensors

are very difficult to detect. If both expected tensors have

strike-slip configuration, the method is not able to separate

the tensors even when the horizontal angular difference

between both s1 was 608 (case 3). This is also a

consequence of the fault combination procedure that leads

to spurious solutions halfway between both original stress

tensors. So, these drawbacks are intrinsic to the method that

introduces some artefacts based on the grouping of the fault-

slip data in subset k-faults. They will probably be common

to other methods that use similar procedures, that is, those

methods that analyse subsets of faults by inversion

procedures and use the clustering of these solutions in

order to define stress tensors and therefore homogeneous

fault-slip data. Other disadvantages of this method arise

because the results do not permit the identification of the

faults defining the stress tensors and therefore additional

field information, such as that related to the chronological

relationship between different striations on a fault plane,

cannot be used to relatively date the inferred stress tensors.

The Etchecopar method (Etchecopar et al., 1981), used in

combination with the y–R diagram method (Simón-Gómez,

1986), usually gives good results but generally some faults

are wrongly assigned to subgroups. In any case, these faults

are normally so few that they do not affect greatly the

determined stress tensor. However, when one of the tensors

consists of a small number of faults (case 2), there is a great

variability in the determined stress tensors because the

misgrouping faults can modify the results. If the quality

criteria provided by this method (e.g. the Mohr circle) or the

results of additional methods such as the y–R diagram are

taken into account these rogue faults can usually be

identified and removed from the solution.

In general, additional field data are of great importance in

the interpretation of the results obtained from fault-slip data

inversion. The geometric relationships between fault planes

or fault sets (e.g. Andersonian models of faults), the cross-

cutting relationships between different striations on a fault

plane, and/or additional information of other structures such

as tectonic stylolites and tension gashes, allow the

researcher to make, in some cases, the correct choice of

stress tensors. The choice of fault-slip criteria affects which

faults are included in the eventual solution. In our tests (two

homogeneous data sets merged together) or in the analysis

of Ogmore 4 site data, for example, the fact that most of the

faults represent newly formed planes (as can be inferred

from their Andersonian quasiconjugate configurations) has

been used to select the appropriate stress tensors. In such

tensors, the fault planes are favourably oriented for slip

(located in the left-upper part of the Mohr circle), so that

they are mechanically consistent with the data. The study of

the case where both homogeneous fault sets represent

reactivated faults has not been carried out here and it should

be the focus of further research.

Finally, our study shows that all investigated methods

can yield different solutions from appropriate ones if special

initial conditions are taken into account. In any case, all

methods require different input data, so that it is necessary

for researchers to make decisions. Our findings suggest that

other data, such as geometrical data among faults or data
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from other structures (stylolites or tension gashes for

example), must be taken into account when introducing

the input conditions and/or interpreting the results in order

to reach true solutions. Thus, at the moment there exists no

fully automatic procedure for separating stress tensors and

we believe that the attempt to propose such a method will be

not successful because too many factors, such as if the faults

are newly formed of reactivated fractures, are combined in

the fracturing process.
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Appendix A

The modified version of the cluster program used in this

study, which resulted as a consequence of this research,

differs from that proposed by Nemcok and Lisle (1995) just

in regard to the positions of s1 and s2 stress axes in the

searching grid, which have here interchanged positions. In

the new version, to obtain a set of variable tensor

orientations, s2 orientations instead of s1 orientations

were chosen according to the spherical grid pattern as is

explained by Nemcok and Lisle (1995). For each selected s2

orientation a variety of s3 directions is produced by

incremental rotations through an angle b (grid spacing

angle) about the s2-axis. Afterwards, taking into account the

positions of s2 and s3 stress axes the position of s1 is

calculated from the orthogonality constraint. This modifi-

cation means that s1 and s3 have the same number of

different positions and spatial distribution in the searching

grid, which therefore leads to a more homogeneous and

efficient search for the compatibility between pairs of faults.

Moreover the grid spacing angle, the misfit threshold

angle and the shear stress condition are the other input

parameters used by the cluster procedure. The first one

considers the difference angle between the striation pitch

predicted using Bott’s (1959) equation for each tensor and

the measured striation pitch on the fault. If the discrepancy

exceeds the threshold angle, the fault and tensor are

considered incompatible. The shear stress condition may

also be introduced to consider whether or not a fault fits each

tensor. When a value of the shear stress/normal stress (t/s)

ratio is introduced, the faults that fit each tensor must also

possess a higher value than the input value.
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et simulations de déformations plastiques (approche mathématique).
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Simón-Gómez, J.L., 1986. Analysis of a gradual change in stress regime

(example from the eastern Iberian Chain, Spain). Tectonophysics 124,

37–53.

Vandycke, S., Liesa, C.L., Fry, N., Lisle, R.J., 1992. Palaeostresses deduced

from brittle structures in Carboniferous and Triassic rocks, S. Wales.

Abstracts of the 23th Annual Meeting of the Tectonic Studies Group,

Southampton, UK.

Yamaji, A., 2000. The multiple inverse method: a new technique to separate

stresses from heterogeneous fault-slip data. Journal of Structural

Geology 22, 441–452.

C.L. Liesa, R.J. Lisle / Journal of Structural Geology 26 (2004) 559–572572


	Reliability of methods to separate stress tensors from heterogeneous fault-slip data
	Introduction
	Methods used in this study
	Testing the simulated heterogeneous fault-slip data
	Data
	The relative dominance of subgroups
	The difference in tensors from individual subgroups

	Testing a natural heterogeneous data set: comparison with other structural data
	Data
	Results
	Interpretation

	Discussion and conclusions
	Acknowledgements
	References


